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Introduction

The use of CFD in the design and analysis of high performance rocket engine pumps

has increased in recent years. This increase has been aided by the activities of the

Marshall Space Flight Center (MSFC) Pump Stage Technology Team ('PSTT) (table 1).

The team's goals include assessing the accuracy and efficiency of several

methodologies and then applying the appropriate methodology(s) to understand

and improve the flow inside a pump. The PSTT's objectives, team membership,
and past activities are discussed in Garcial and Garcia2. The PSTT is one of three

teams that form the NASA/MSFC CFD Consortium for Applications in Propulsion

Technology (McConnaughey3). The PSTT first applied CFD in the design of the

baseline consortium impeller. This impeller was designed for the Space

Transportation Main Engine's (STME) fuel turbopump. The STME fuel pump was

designed with three impeller stages because a two-stage design was deemed to pose a

high developmental risk. The PSTT used CFD to design an impeller whose

performance allowed for a two-stage STME fuel pump design (table 2). The

availability of this design would have lead to a reduction in parts, weight, and cost

had the STME reached production. One sample of the baseline consortium impeller

(figure 1) was manufactured and tested in a water rig. The test data showed that the

impeller performance was as predicted and that a two-stage design for the STME fuel

pump was possible with minimal risk. The test data also verified another CFD

predicted characteristic of the design that was not desirable. The classical "jet-wake"

pattern at the impeller discharge was strengthened by two aspects of the design: by

the high head coefficient necessary for the required pressure rise and by the

relatively few impeller exit blades, 12, necessary to reduce manufacturing cost (figure

2). This "jet-wake" pattern produces an unsteady loading on the diffuser vanes and

has, in past rocket engine programs, lead to diffuser structural failure. In industrial

applications, this problem is typically avoided by increasing the space between the

impeller and the diffuser to ,,'low the dissipation of this pattern and, hence, the

reduction of diffuser vane unsteady loading. This approach leads to small

performance losses and, more importantly in rocket engine applications, to

significant increases in the pump's size and weight. This latter consideration

typically makes this approach unacceptable in high performance rocket engines.





T
r

After all, one of the motivations for designing the baseline consortium impeller was
to reduce pump weight. The "jet-wake" pattern predicted and measured for the

baseline impeller, while not totally unacceptable, would have necessitated thick

diffuser vanes if the typical impeller diffuser gap of 3-5 percent of the impeller
radius were to be maintained. The thicker diffuser vanes would entail a

performance loss, and because of the STME's gas-generator engine cycle,

performance losses in the turbopumps leads directly to engine performance losses.

This is especially true of the fuel pump which absorbs approximately three times the

horsepower of the LOX pump. Therefore, the new challenge for the PSTT became to

design a high head coefficient impeller with low blade count and a minimized blade

to blade (b-t-b) velocity distortion. ,

To achieve this goal, it was decided that a parametric study should be conducted.

This study consisted of evaluating the effect of six different geometric parameters on

the impeller performance. The study included the participation of seven PSTT

members using six different CFD codes. During the study the impeller designs

analyzed had the same inlet and exit diameters and were designed to produce the
same head as the baseline consortium impeller. This was done so that the effect of

each parameter on the flow distortion could be adequately accessed. A listing of the

cases analyzed appears on table 3. Each member performed an analysis of the

baseline consortium impeller and the results of that analysis were used as the base

of comparison for subsequent calculations. The grid sizes used were determined by

each individual team member based on past experience with their code on impeller

calculations. All the codes used have been previously benchmarked against two

experimental Laser Velocimeter (L2F) datasets, most recently using data from the

Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump (HPFTR)

impeller tests (Brozowski4). These benchmark activities demonstrated that impeller

performance and impeller exit flow distortion were predicted very well. Typical
results are reported by Prueger5 for the REACT3D code.

Figure 3 shows schematically the domain analyzed and the boundary conditions

used in all but one case. In the actual hardware there is a rapid expansion in the

flow area in the vaneless space between the impeller trailing edge and the diffuser

vane leading edge. The affect of this vaneless space had been studied in the PSTT

and it was found that ignoring it and instead modeling the passage as having a

continuous width with "slip" boundaries was adequate for analyzing the impeller.

However, to ensure that these earlier conclusions were applicable to the current

design, one case was run of the baseline consortium impeller which included the

actual vaneless space expansion downstream of the impeller. The inclusion of the

vaneless space, while not changing the impeller flow significantly, did have a large

effect on the velocity profiles at the radius corresponding to the diffuser vane

leading edge. However, none of the calculations included the diffuser vanes or its

potential effect on the impeller.
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Results

The effect of a given parameter on the impeller performance was evaluated using

both distributions of key performance variables and integrated "global" performance

variables. Figure 4 shows the impact of the various parameter on the global head

coefficient and efficiency. Figure 5 shows the effect on global distortion parameter.

Ideally, the flow split should be equal on either side of the partial (or short) blades.

Any mass flow imbalance across the partial blades will generate a dynamic load on

the diffuser vanes. Not only should the flow be balanced on either side of the

partial blade, but the velocity distribution in the b-t-b direction should be as uniform

as possible. The b-t-b distortion parameter is a measure of the non-uniformity in

the velocity in the b-t-b direction. Similarly, the hub-to-shroud (h-t-s) distortion

parameter is a measure of the distortion of the flow vector in the

h-t-s direction. Non uniformity in the h-t-s direction affects the design of the

diffuser because it represents a spanwise flow angle variation to the diffuser vane.

Small h-t-s distortions can be accounted for in the design but large distortions

cannot. From figure 5 it can be seen that there is often an inverse relationship

between b-t-b distortion and h-t-s distortion. Further, by comparing figures 4 and 5 it

can be seen that distortion and efficiency are not necessarily proportional. One can

have increased distortion and an accompanying increase in efficiency. Overall, most

of the concepts studied did not significantly affect efficiency, which was very high on

the baseline impeller, and only a few significantly changed the flow split, which was

nearly ideal in the baseline impeller at 49 percent/51 percent. Therefore, the

parameters studied changed the impeller exit distortion while preserving the

desirable properties of the baseline consortium impeller. In the subsequent sections,

each one of the six major geometric parameter variation grouping will be discussed.

Vaneless Space: Ames Research Center (ARC) was assigned the task of evaluating

the effect of the actual vaneless space geometry immediately downstream of the

impeller on the impeller performance. The geometry immediately downstream of

the impeller was in all the other cases simplified by modeling it as a constant span

area with slip boundary conditions. ARC was to perform an analysis to assess the

validity of this simplification. ARC used the code INS3D-UP (Kiris6) to perform this

task. Figure 6a shows that the h-t-s distribution is affected by the inclusion of the

vaneless space but the form of the b-t-b distribution is not significantly affected

(figure 6b). There is a slight increase in the work done by the impeller due to a delay

in the blade trailing edge unloading that occurs when the vaneless space is included

in the analysis.

Chordwise Blade Loading Distributiorf: Rocketdyne Division, Rockwell

International (Rkdn) was assigned the task of evaluating the effect of changing the

chordwise blade loading distribution on the impeller performance and distortion.





Rkdn used the CFD code REACT-3D (ChanT) to perform this task and the impeller
axial length study to be discussed in the following section. The variations modeled

where: (1) shifting the long blade's loading towards the leading edge, and (2)

shifting the long blade's loading towards the trailing edge. Figure 8 shows that

there was no clear change in the impeller's head coefficient and efficiency due to
either one of these two changes. From figure 9 it is also evident that the b-t-b

distortion was not significantly affected either. The low leading edge loading case
does lead to a more favorable flow split (figure 5).

Impeller Axial Length: Rkdn also varied the impeller's axial length to determine its

impact on performance and distortion. The baseline design has a low momentum

region near the long blade leading edge along the shroud. It was proposed that an

increase in the impeller's axial length would increase the radius of curvature and

decrease or eliminate this low momentum region. For this portion of the study, the

impeUer's discharge axial width, B2, was decreased by 20 percent to reduce diffusion.

Because of this latter change, the impeller blade exit angle was increaseed to 41.5

degrees from the baseline's 38 degrees to maintain a consistent head rise. Once

again, the performance was not significantly affected by these changes (figure 8) but

the b-t-b was decreased by the increased impeller axial length (figure 9). Note from
figure 5, however, that the case with the lowest b-t-b distortion has the worst h-t-s

distortion. Also, increasing the impeller axial length generally is a detriment to the

rotordynarnics of a pump. Therefore, if increasing the axial length of the impeller is

used as a method for improving the baseline design, then considerations in addition

to b-t-b distortion will weigh heavily on determining the definitive axial length.

Tandem Blading: SECA was assigned the task of evaluating the effect of cutting the

long "impeller blades near the leading edge and clocking one portion of the blade

relative to the other. Earlier studies in the PSTT had indicated that tandem blades

were to be successful, the cut of the long blade should be near the leading edge.

SECA ran two cases where the tandem blades were rotated 7.5 degrees and 22.5

degrees, respectively, relative to the remainder of the long blade. This rotation was

performed in the direction opposite to the impeller's rotation. The logic being to

use high energy flow from the tandem blade's pressure side to energize the suction

side of the long blade. SECA used the code FDNS3D (ChenS) to perform this task.

The performance decreased significantly (figure 10) and the b-t-b distortion increased

(figure 11). (Notice that because of the grid mapping, the angular reference is not the

same for these three cases. This will be corrected for the final paper.) And these two

changes suffered a double penalty in that the h-t-s distortion increased as well. The

general conclusion is that small relative clockings may improve the flowfield, but

large clockings do not. In retrospect, this concept may not be as effective as similar

concepts are in other applications because the flow in a radial impeller is primarily

dominated by rotational forces. The low momentum regions seen in the baseline

design were caused by either the rapid bending of the streamline from the axial to
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the radial direction or by the secondary flows set up by the pressure-to-suction

pressure gradients.

Partial Blade Chord Length, Location: Location of the partial blade leading edge was
also studied. Scientific Research Associates (SRA) studied two cases where the

partial blade's chord length was increased. SRA used the code MINT (Briley 9) to
perform this task. Increasing the length of the partial increased the impeller exit b-t-
b distortion (figure 12) as well as the h-t-s distortion (figure 5). Based on the trend in

the flow split, a small increase in the partial blade length may provide the even
mass split desired across the partial blade. The second portion of this part of the
study involved maintained the partial blade's chord length constant, but varied the

location of the partial's leading edge. In the baseline, the leading edge of the partial
blade bisects the angle between adjacent long blade. For this task Lewis Research
Center used the code HAH3d (Hahl0). Initially, two variations about the baseline

were run involving a 5 degree shift in the leading edge of the partial towards the

suction side of the long blade, and a 5 degree shift towards the pressure side of the
long blade. Based on these results, a third case involving a 2.5 degree shift towards

the pressure side of the long blade was run. Figure 13 shows that the last two cases
reduced the distortion in the b-t-b direction. The 2.5 degree shift has an ideal

predicted flow split of 50/50. (The results of these calculations will be included in

figures 4 and 5 of the final paper).

Blade Trailing Edge Lean: The trailing edge of the blades are nearly axial in the

baseline design. Virginia Polytechnic Institute (VPI) studied the effect of varying the

blade trailing edge circumferential location from h-t-s. Backward lean is defined as

the shroud trailing edge leading the hub trailing edge as the impeUer rotates.
Forward lean is the reverse; the hub trailing edge leads the shroud trailing edge.

The initial results indicated that backward lean did significantly reduce b-t-b

distortion. However, the initial lean cases modeled also changed the blade trailing

edge angle. Therefore, to understand whether it was the backward lean or the blade

exit angle distribution that lead to the improvement, two additional cases were rtm
which studied these two variations independently. Figure 14 shows that the
backward blade lean is the dominant cause for the decrease of b-t-b distortion and

from figure 5 it appears that a combination of blade lean and blade exit angle

variations may be more effective than lean alone (VPI #2 vs. VPI #5). This concept

looks promising but presents two potentially negative aspects: (1) the h-t-s

distortion rises proportionally to the decrease in b-t-b distortion, and (2) the blade

lean c_,ncepts may be more difficult to manufacture.

Conclusions

The PSTT has, with the use of CFD, improved the performance of rocket engine

impellers. An example of the baseline consortium impeller has been tested and its





performance is very close to that predicted. Further studies have been conducted

with the goal of arriving at design concepts which decrease the b-t-b flow distortion

at the impeller exit without sacrificing performance. Results indica4e that the

simplifications made in the vaneless space downstream of the impeller do not

compromise the results. Changing the work distribution along the blade chord did

significantly affect the distortion. Small relative ciockings in a tandem blade design

may be beneficial as well as small increases in the chord length of the partial blade.

Large clockings or large increases in the partial blade chord length tend to increase

distortion. Changing the circumferential location of the partial blade leading edge,

increasing the impeller axial length, and backward lean of the blade trailing edge are

viable concepts for reducing the b-t-b distortion. These results will be studied in

detail and a new impeller incorporating one or several of these concepts will be

designed, manufactured, and tested. Based on the preliminary assessment of the

results, the team has already decided that further increases in head coefficient are

possible while still maintaining efficiency and acceptable levels of distortion.
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Definition of Performance Parameters

c u = Cu / Utip where Cu = absolute tangential velocity

c_.= C ./U+=. where C = meridional velocity
III III tllJ III

U. = wheel tip velocity
tip "

13= relative flow angle, in degrees, referenced from tangential dir.

¢x= absolute flow angle, in degrees, referenced from tangential dir.

TI -efficiency - head rise/Euler head rise

_V= head coefficient - AH tg/U t2p

RSHL = rotor stagnation head loss coefficient
2

= (Euler head - head rise) g/U tip

Relative Radius = (R i R hub) / (R - R" shroud hub )

Relative X = (X - X ) / (X - X )
i shroud hub shroud

Relative Angle = (Angle - Angle ) / (Angle - Angle )
i suction pressure suction





Distortion Parameter Definitions

hub-to-shroud = [max((z k) - min (ek)l hub-to-shroud

where (Xk= mass averaged flow angle, averaged in the blade-to-blade direction

blade-to-blade = C _max ((x.) - min ((x j)]j blade-to-blade

where C = average total discharge velocity

(x. = mass averaged flow angle, averaged in the hub-to-shroud direction
J





TABLE 1. PUMP TEAM MEMBERS

• NASA Marshall Space Flight Center (MSFC)

• NASA Ames Research Center (ARC)

• NASA Lewis Research Center (LeRC)

• David Taylor Research Center

• Rocketdyne (RDYN)

* Pratt & Whitney (P&W)

• Aerojet

• Ingersoll-Rand

• CFD Research Corporation

• SECA

• Scientific Research Associates (SRA)

• The University of Alabama in Huntsville (UAH)

• Pennsylvania State University (PSU)

• University of Cincinnati

• Virginia Polytechnic Institute

• California Institute of Technology

TABLE 2 - IMPELLER SPECIFICATION

RPM 30108

Impeller InletTip D 9.38

Impeller Inlet Hub D 6.097

Impeller Inlet B 17.9

Impeller Outlet D 14.14

Impeller Outlet 13 38.0

Impeller B2 Width 1.12

Impeller Tip Speed 1857

Impeller Specific Speed 1141

Impeller W2/W 1 0.690

Impeller C_/C 1 0.377

Impeller Cu2/U 2 0.726

Impeller Blade Number 6+6

D: Diameter in Inch, 13: RMS Blade Angle from Tangential.





Table 3. List of Cases Analyzed

Cases Postprocessed

Organization

ARC #1

ARC #2

Rkdn #1

Rkdn #2

Rkdn #3

Rkdn #4

Rkdn #5

Rkdn #6

_;ECA #1

SECA #2

SECA #3

SRA #1

SRA #2

SRA #3

VPI #1

VPI #2

VPI #3

VPI #4

VPI #5

Size

328K

540K

20K

20K

20K

20K

20K

20K

71K

75K

75K

160K

160K

160K

33K

20K

20K

33K

33K

Description

Baseline

Baseline with exit cavity at imp. exit

Baseline

Baseline envelope, heavy I.e. loading

Baseline envelope, light 1.e. loading

Axial length +37%, B2 -20%, Beta2 = 41.5

Axial length +20%, B2 -20%, Beta2 = 41.5

Axial length +00%, B2 -20%, Beta2 = 41.5

Baseline

Tandem blade, 7.5 degrees clocking against rotation

Tandem blade, 22.5 degrees clocking against rotation

Baseline

Increases partial blade length

Longest partial blade length

Baseline

Backward blade lean, Moore distribution

Forward blade lean, Moore distribution

Base. envelope, no blade lean, Beta2 46-32 degrees

Base. envelope, backward blade lean, Beta2 = 38 degrees
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11 INCH SSME HPFTP IMPELLER
LASER VELOCIMETER TEST DATA

R=5,570" R=5.701" R=5.833"

".°

Figure 2. SSME HPFTP impeller exit radial velocity measurements
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Figure 6a. Circumferentially averaged hub-to-shroud impeller exit radial velocity distribution
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Figure 10. Performance prediction for the tandem blade study
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Advanced Impeller Parametrics: Tandem Blades
Rel. Flow Angle vs. Rel Angle: R/Rtip = 1.0275, Rel X = .5
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Figure 11. Blade-to-blade impeller exit radial velocity distribution at 50% of the blade span
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Figure 12. Blade-to-blade impeller exit radial velocity distribution at 50% of the blade span
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Figure 13. Blade-to-blade impeller exit radial velocity distribution at 50% of the blade span
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Figure 14. Blade-to-blade impeller exit radial velocity distribution at 50% of the blade span




